Search results

Search for "Cu(I) catalyst" in Full Text gives 27 result(s) in Beilstein Journal of Organic Chemistry.

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • novel metallaphotoredox catalysis by combining the NaI/PPh3 photoredox catalyst with a Cu(I) catalyst to accomplish diverse C–O/N cross-couplings of alkyl N-hydroxyphthalimide esters 3 with various phenols/secondary amines 30 (Scheme 13) [24]. It was anticipated the utilization of computational methods
PDF
Album
Review
Published 22 Nov 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • similar approach, Sawamura, Ohmiya and co-worker [62] accomplished the enantioselective conjugate addition of alkylboranes to α,β-unsaturated ketones in the presence of NHC–Cu(I) catalyst generated in situ from a chiral imidazolium salt and PhOK. A variety of functional groups are tolerated in the
PDF
Album
Review
Published 20 Sep 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • active Cu(I) catalyst. The reaction was broadly successful with the steric and electronic nature of the aryl iodide having little effect on the reaction. Iron-catalyzed reactions Being the most earth-abundant d-block element, as well as orders of magnitude less expensive than other transition-metal
PDF
Album
Review
Published 24 Apr 2023

Preparation of β-cyclodextrin-based dimers with selectively methylated rims and their use for solubilization of tetracene

  • Konstantin Lebedinskiy,
  • Volodymyr Lobaz and
  • Jindřich Jindřich

Beilstein J. Org. Chem. 2022, 18, 1596–1606, doi:10.3762/bjoc.18.170

Graphical Abstract
  • propargyl-containing compounds, including other CDs, to form a dimer [12]. Usually, such reactions proceed with a Cu(I) catalyst [27]; however, Cu(I) can be generated in situ by the reduction of Cu(II) [12][28] or by the dissolution of metal copper [29]. Moreover, the load of the catalyst varies from
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2022

Microelectrode arrays, electrosynthesis, and the optimization of signaling on an inert, stable surface

  • Kendra Drayton-White,
  • Siyue Liu,
  • Yu-Chia Chang,
  • Sakashi Uppal and
  • Kevin D. Moeller

Beilstein J. Org. Chem. 2022, 18, 1488–1498, doi:10.3762/bjoc.18.156

Graphical Abstract
  • peptide so that the thiol group in the sidechain could be used to place the molecule the array with the use of an electrochemically initiated Cu(I)-catalyzed cross-coupling reaction (Scheme 1) [9]. To this end, the Cu(I) catalyst needed for the reaction was generated at the electrodes by the reduction of
  • Cu(II). Confinement of the Cu(I) catalyst to the selected electrodes was accomplished with the use of oxygen in solution. The oxygen oxidized any Cu(I) before it could migrate to a non-selected electrode. The electrodes selected for the reduction were cycled on an off with each cycle turning the
  • electrode on for 90 s and then off for 180 s. This was done to tune the rate of Cu(I) generation to match the rate of Cu(I) oxidation in solution and in so doing optimize confinement of the Cu(I) catalyst to the selected electrodes. Longer "on-times" would lead to more reagent generation making it harder
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2022

Synthesis of novel alkynyl imidazopyridinyl selenides: copper-catalyzed tandem selenation of selenium with 2-arylimidazo[1,2-a]pyridines and terminal alkynes

  • Mio Matsumura,
  • Kaho Tsukada,
  • Kiwa Sugimoto,
  • Yuki Murata and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 863–871, doi:10.3762/bjoc.18.87

Graphical Abstract
  • ]. Based on this report and the above control experiments, a plausible selenation reaction mechanism is shown in Figure 3. The first step of the reaction involves the generation of intermediate A by the oxidative addition of the Cu(I) catalyst to the diselenide 2. The terminal alkyne coordinates with
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2022

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • trapped by Cu(II) to deliver the Cu(III) species 12, which undergoes intramolecular annulation and reductive elimination to afford the desired product 8 and regenerate the Cu(I) catalyst. Path b: vinyl radical intermediate 11 is oxidized by Cu(II) to give the cationic vinyl species 14. Finally, the
PDF
Album
Review
Published 22 Sep 2021

Copper-catalyzed O-alkenylation of phosphonates

  • Nuria Vázquez-Galiñanes,
  • Mariña Andón-Rodríguez,
  • Patricia Gómez-Roibás and
  • Martín Fañanás-Mastral

Beilstein J. Org. Chem. 2020, 16, 611–615, doi:10.3762/bjoc.16.56

Graphical Abstract
  • groups, and final reductive elimination would form the new C(sp2)–O bond, providing an acyclic enol phosphonate with concomitant regeneration of the Cu(I) catalyst (Scheme 1b). Herein we report the successful realization of such a copper-catalyzed oxygen-alkenylation strategy and show that a range of
PDF
Album
Supp Info
Letter
Published 03 Apr 2020

A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions

  • Pezhman Shiri and
  • Jasem Aboonajmi

Beilstein J. Org. Chem. 2020, 16, 551–586, doi:10.3762/bjoc.16.52

Graphical Abstract
  • presence of Cu2O nanoparticles. The TRGO/Cu(I) catalyst (2 mol %) was applied in the synthesis of triazole derivatives by the reaction of benzyl azide with different alkynes at 40 °C for 48 h. In this protocol, the TRGO/Cu(I) species could be simply recovered and recycled four times without any significant
PDF
Album
Review
Published 01 Apr 2020

Recent advances in photocatalyzed reactions using well-defined copper(I) complexes

  • Mingbing Zhong,
  • Xavier Pannecoucke,
  • Philippe Jubault and
  • Thomas Poisson

Beilstein J. Org. Chem. 2020, 16, 451–481, doi:10.3762/bjoc.16.42

Graphical Abstract
  • suggested a possible mechanism based on the measured and reported redox potential (Scheme 1). Upon irradiation at 530 nm using green light, the Cu(I) catalyst transitions to an excited state. Then, the excited copper complex transfers an electron to the alkyl halide, which can generate an alkyl radical that
  • subsequently adds to the alkene. The resulting C-centered radical is oxidized by the Cu(II) complex, regenerating the Cu(I) catalyst, and the formed carbocation is trapped by the halide. Worth to mention is that very recently, Reiser and Engl demonstrated the possible use of [Cu(dmp)2Cl]Cl as an efficient
  • the haloketone. Hence, after being excited by light, the excited [Cu(I)]* complex gave an electron to the α-haloketone. Then, the ketone radical combined with allyltributyltin to generate a Bu3Sn radical. A final electron transfer from the Bu3Sn radical to [Cu(II)] regenerated the Cu(I) catalyst
PDF
Album
Review
Published 23 Mar 2020

Photophysics and photochemistry of NIR absorbers derived from cyanines: key to new technologies based on chemistry 4.0

  • Bernd Strehmel,
  • Christian Schmitz,
  • Ceren Kütahya,
  • Yulian Pang,
  • Anke Drewitz and
  • Heinz Mustroph

Beilstein J. Org. Chem. 2020, 16, 415–444, doi:10.3762/bjoc.16.40

Graphical Abstract
PDF
Album
Supp Info
Review
Published 18 Mar 2020

Photoreversible stretching of a BAPTA chelator marshalling Ca2+-binding in aqueous media

  • Aurélien Ducrot,
  • Arnaud Tron,
  • Robin Bofinger,
  • Ingrid Sanz Beguer,
  • Jean-Luc Pozzo and
  • Nathan D. McClenaghan

Beilstein J. Org. Chem. 2019, 15, 2801–2811, doi:10.3762/bjoc.15.273

Graphical Abstract
  • cyclization reaction yielding the corresponding azobenzene 1f was performed using a Cu(I) catalyst generated in situ [36]. Finally, the esters were hydrolyzed under mild conditions resulting in the azobenzene-BAPTA macrocycle 1. To gain some insight into the possible structures of the 1E and 1Z chelators and
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • yields, fast rate, high selectivity, and a broad substrate scope were observed by the authors (Scheme 35). The proposed mechanism is as follows: ligand exchange of the active Cu(I) catalyst A, which is generated via either reduction by the solvent or disproportionation of the precatalyst Cu(II)(OTf)2
PDF
Album
Review
Published 23 Sep 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • abstraction from the sp3 carbon atom leading to the formation of six-membered Cu(III) species 42. Furthermore, consecutive isomerization/oxidation/reductive elimination leads to the generation of final compound 37 with regeneration of the Cu(I) catalyst (Scheme 14). The presence of EDGs as compared to EWGs on
  • poor yields (5-Cl, 5-Me; 14 and 23%, respectively) whereas no target compound was synthesized with unsubstituted 2-AP 3. This methodology also provides a simple and concise route for the synthesis of the anxiolytic drug alpidem. The use of a Cu(I) catalyst was not fruitful for this synthesis. This
PDF
Album
Review
Published 19 Jul 2019

Copper(I)-catalyzed tandem reaction: synthesis of 1,4-disubstituted 1,2,3-triazoles from alkyl diacyl peroxides, azidotrimethylsilane, and alkynes

  • Muhammad Israr,
  • Changqing Ye,
  • Munira Taj Muhammad,
  • Yajun Li and
  • Hongli Bao

Beilstein J. Org. Chem. 2018, 14, 2916–2922, doi:10.3762/bjoc.14.270

Graphical Abstract
  • , making this protocol operationally simple. The Cu(I) catalyst not only participates in the alkyl diacyl peroxides decomposition to afford alkyl azides but also catalyzes the subsequent CuAAC reaction to produce the 1,2,3-triazoles. Keywords: alkyl diacyl peroxides; azidotrimethylsilane; click reaction
  • experimental findings, a possible reaction mechanism is suggested as shown in Scheme 5. In the presence of the Cu(I) catalyst, alkyl diacyl peroxide decomposes into an alkyl radical, CO2, and releases a carboxyl–Cu(II) complex, which undergoes a ligand exchange with azidomethylsilane to form azido–Cu(II
  • ) species. The alkyl radical then abstracts the azido moiety from the azido–Cu(II) species to afford an alkyl azide and the regenerated Cu(I) catalyst. Then, a conventional CuAAC process delivers the desired cycloaddition product 3. Conclusion In summary, we have established an efficient, ligand- and
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2018

Practical tetrafluoroethylene fragment installation through a coupling reaction of (1,1,2,2-tetrafluorobut-3-en-1-yl)zinc bromide with various electrophiles

  • Ken Tamamoto,
  • Shigeyuki Yamada and
  • Tsutomu Konno

Beilstein J. Org. Chem. 2018, 14, 2375–2383, doi:10.3762/bjoc.14.213

Graphical Abstract
  • °C for 20 h enabled the formation of the corresponding cross-coupling reaction product 6a in 67% yield (Table 3, entry 1). Optimization of the Cu(I) catalyst for the benzoylation reaction (Table 3, entries 2–4) revealed that Cu2O was the most efficient for producing 6a (81% by NMR, Table 3, entry 4
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2018

DFT calculations on the mechanism of copper-catalysed tandem arylation–cyclisation reactions of alkynes and diaryliodonium salts

  • Tamás Károly Stenczel,
  • Ádám Sinai,
  • Zoltán Novák and
  • András Stirling

Beilstein J. Org. Chem. 2018, 14, 1743–1749, doi:10.3762/bjoc.14.148

Graphical Abstract
  • explain our computational strategy and discuss the possible reaction paths leading to the formation of 5-(diphenylmethylene)-4,5-dihydrooxazole in the reaction of propargylic amides and diaryliodonium salts in the presence of a Cu(I) catalyst. This is a simplified model of the original reaction scheme [44
PDF
Album
Supp Info
Full Research Paper
Published 12 Jul 2018

Hypervalent organoiodine compounds: from reagents to valuable building blocks in synthesis

  • Gwendal Grelier,
  • Benjamin Darses and
  • Philippe Dauban

Beilstein J. Org. Chem. 2018, 14, 1508–1528, doi:10.3762/bjoc.14.128

Graphical Abstract
  • cyanotrifluoromethylation reaction. The mechanistic study of the oxy-trifluoromethylation of phenylacetylene has then led to demonstrate that the reaction is accelerated in the presence of additives such as B2pin2 [35]. A mechanism involving an initial step of transmetallation of B2pin2 with the Cu(I) catalyst was proposed
PDF
Album
Review
Published 21 Jun 2018

Progress in copper-catalyzed trifluoromethylation

  • Guan-bao Li,
  • Chao Zhang,
  • Chun Song and
  • Yu-dao Ma

Beilstein J. Org. Chem. 2018, 14, 155–181, doi:10.3762/bjoc.14.11

Graphical Abstract
  • . Finally, reductive elimination of the intermediate D would afford the desired product and regenerate Cu(I) catalyst to restart the catalytic cycle. Direct trifluoromethylation of C(sp2)–H with a radical trifluoromethylation reagent (CF3SO2Na): The radical trifluoromethylation via direct C(sp2)–H
PDF
Album
Review
Published 17 Jan 2018

Oxidative dehydrogenation of C–C and C–N bonds: A convenient approach to access diverse (dihydro)heteroaromatic compounds

  • Santanu Hati,
  • Ulrike Holzgrabe and
  • Subhabrata Sen

Beilstein J. Org. Chem. 2017, 13, 1670–1692, doi:10.3762/bjoc.13.162

Graphical Abstract
  • mechanism of this transformation involved a single electron transfer reaction of the Cu(I) catalyst with TBPC to afford a tert-butoxy radical, which then reacts with 85 by abstracting a hydrogen atom to afford carbon radical species R. Cu(II)-mediated Kochi-type radical oxidation of R generated the iminium
PDF
Album
Review
Published 15 Aug 2017

Effect of the ortho-hydroxy group of salicylaldehyde in the A3 coupling reaction: A metal-catalyst-free synthesis of propargylamine

  • Sujit Ghosh,
  • Kinkar Biswas,
  • Suchandra Bhattacharya,
  • Pranab Ghosh and
  • Basudeb Basu

Beilstein J. Org. Chem. 2017, 13, 552–557, doi:10.3762/bjoc.13.53

Graphical Abstract
  • %, Table 1, entry 1). To check the role of our Cu(I) catalyst, we performed the same reaction under similar conditions in the absence of the copper catalyst (Table 1, entry 2). To our surprise, the same product spot was noticed on TLC plate and further work-up and purification afforded the product in
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2017

Copper-catalyzed [3 + 2] cycloaddition of (phenylethynyl)di-p-tolylstibane with organic azides

  • Mizuki Yamada,
  • Mio Matsumura,
  • Yuki Uchida,
  • Masatoshi Kawahata,
  • Yuki Murata,
  • Naoki Kakusawa,
  • Kentaro Yamaguchi and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2016, 12, 1309–1313, doi:10.3762/bjoc.12.123

Graphical Abstract
  • the reaction of the Cu(I) catalyst and ethynylstibane 1. Complex A coordinates with an organic azide to give complex B. Cyclization proceeds via a vinylidene-like transition state C to give 5-stibanotriazole 3. To test the reactivity of 5-stibanotriazole 3a was treated with hydrochloric acid, halogens
PDF
Album
Supp Info
Letter
Published 23 Jun 2016

Tuning of tetrathiafulvalene properties: versatile synthesis of N-arylated monopyrrolotetrathiafulvalenes via Ullmann-type coupling reactions

  • Vladimir A. Azov,
  • Diana Janott,
  • Dirk Schlüter and
  • Matthias Zeller

Beilstein J. Org. Chem. 2015, 11, 860–868, doi:10.3762/bjoc.11.96

Graphical Abstract
  • excess cannot be considered a disadvantage of the method. Additionally, use of the inexpensive Cu(I) catalyst allows to avoid Buchwald–Hartwig amination [24][25], which employs more expensive Pd-based catalysts for a similar type of C–N coupling reactions. In a typical procedure, 1 equiv of MPTTF 7a, 7b
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2015

Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics

  • Gijs Koopmanschap,
  • Eelco Ruijter and
  • Romano V.A. Orru

Beilstein J. Org. Chem. 2014, 10, 544–598, doi:10.3762/bjoc.10.50

Graphical Abstract
  • azides (Scheme 25) [85]. Advantages of this reaction are the kinetic stability of both functional groups under a range of different conditions. Also, the triazole products can be formed in both organic and aqueous solvents and by using the Cu(I)-catalyst which induces regioselective formation of the 1,4
PDF
Album
Review
Published 04 Mar 2014

Synthesis of multivalent host and guest molecules for the construction of multithreaded diamide pseudorotaxanes

  • Nora L. Löw,
  • Egor V. Dzyuba,
  • Boris Brusilowskij,
  • Lena Kaufmann,
  • Elisa Franzmann,
  • Wolfgang Maison,
  • Emily Brandt,
  • Daniel Aicher,
  • Arno Wiehe and
  • Christoph A. Schalley

Beilstein J. Org. Chem. 2012, 8, 234–245, doi:10.3762/bjoc.8.24

Graphical Abstract
  • attempts to use the same conditions for the fourfold coupling of 1 to 15 to synthesize tetravalent wheel 16 were unsuccessful, and we finally used another procedure for the cross-coupling reaction [107]. Because the Cu(I) catalyst may interfere with the Zn core of porphyrin 15 or lead to Glaser coupled
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2012
Other Beilstein-Institut Open Science Activities